giovedì 2 agosto 2018

Luce ultravioletta fondamentale per la vita.

Fonte: Media INAF
------------------------
Uno studio pubblicato ieri su Nature Advanced, grazie al lavoro svolto da un team di ricercatori del Regno Unito, ha trovato un collegamento tra condizioni per lo sviluppo di forme di vita extraterrestre e l'intensità della luce emessa dalla stella attorno alla quale orbita l'esopianeta.

Ricercatori dell‘Università di Cambridge e del Medical Research Council Laboratory di biologia molecolare (Mcr Lmb) hanno scoperto che le possibilità per cui si possano sviluppare forme di vita sulla superficie di un pianeta roccioso, come la Terra, sono collegate alla tipologia e all’intensità della luce emessa dalla sua stella ospite. Lo studio, pubblicato ieri su Science Advanced, è il risultato di una particolare collaborazione tra il Cavendish Laboratory di Cambridge e il Nrc Lmb, unione tra chimica organica e ricerca degli esopianeti.
Stelle che emettono sufficiente luce ultravioletta, potrebbero dare il calcio di inizio alla vita sui loro pianeti orbitanti, così come è probabile sia accaduto sulla Terra, dove i raggi Uv innescarono una serie di reazioni chimiche, producendo gli elementi costitutivi della vita. I ricercatori hanno individuato un gruppo di esopianeti, situati nella fascia di abitabilità della loro stella, dove la luce ultravioletta di questa è sufficiente per permettere a tali reazioni chimiche di avere luogo.
«Questo lavoro ci consente di restringere i posti migliori per cercare la vita» ha detto Paul Rimmer, ricercatore postdoc affiliato al Cavendish Laboratory e al Mrc Lmb, nonché primo autore del paper. «Ci porta un pò più vicini ad affrontare la questione se siamo soli nell’Universo».
Lo studio è stato costruito sul lavoro svolto dal professor John Sutherland, coautore del paper e studioso delle origini chimiche della vita sulla Terra, il quale già nel 2015 aveva suggerito che il cianuro, anche se mortale, fosse un ingrediente chiave nella zuppa primordiale da cui tutta la vita sulla Terra ha avuto origine. In questa ipotesi il carbonio derivante dalle meteoriti che si schiantarono sulla giovane Terra interagì con l’azoto presente nell’atmosfera, creando così l’acido cianidrico. L’acido cianidrico è piovuto sulla superficie, dove ha interagito con altri elementi in vari modi, alimentato dalla luce ultravioletta del Sole. Le sostanze chimiche prodotte da queste interazioni hanno generato gli elementi costitutivi dell’Rna, che la maggior parte dei biologi crede sia la prima molecola di vita in grado di trasmettere informazioni. In laboratorio il gruppo di Sutherland ha ricreato queste reazioni chimiche sotto le lampade Uv, e generato i precursori di lipidi, amminoacidi e nucleotidi, che sono tutte componenti essenziali delle cellule viventi.
«Mi sono imbattuto in questi esperimenti precedenti, e come astronomo, la mia prima domanda è sempre stata quale tipo di luce stessero usando, cosa cui, in quanto biologi, non avevano realmente pensato. Ho cominciato misurando il numero di fotoni emessi dalle loro lampade, e poi realizzato che confrontare questa luce con quella di diverse stelle era un inequivocabile passo successivo», ha spiegato Rimmer. 
I due gruppi di ricercatori hanno eseguito una serie di esperimenti di laboratorio per misurare quanto velocemente gli elementi costitutivi della vita si possano formare dagli ioni di acido cianidrico e di acido solfidrico in acqua, una volta esposti alla luce ultravioletta. Hanno poi ripetuto lo stesso esperimento in assenza di luce. In quello eseguito sotto la luce sono emersi gli elementi costitutivi necessari, mentre da quello al buio è risultato un composto inerte non idoneo. I ricercatori hanno pertanto tracciato la quantità di luce ultravioletta necessaria ai pianeti in orbita per determinare dove la chimica potrebbe essere attivata. 
Hanno scoperto che le stelle che hanno circa la temperatura del nostro Sole emettono abbastanza luce per la formazione degli elementi costitutivi per la vita sulla superficie dei loro pianeti. Le stelle fredde d’altra parte, non producono abbastanza luce per la creazione di questi elementi, a meno che non abbiano potenti brillamenti solari tali da innescare adeguate catene di reazioni chimiche.
I pianeti che rispettano le condizioni sopra indicate si collocano in quella che i ricercatori hanno chiamato zona di abiogenesi. Tra gli esopianeti conosciuti che si trovano in questa zona, alcuni sono stati rilevati dal telescopio Kepler, incluso Kepler 542b, pianeta a cui è stato dato il soprannome di “cugino” della Terra, nonostante sia troppo lontano per essere esplorato con la tecnologia attuale. Telescopi di prossima generazione, come Tess e James Webb Space Telescope (Jwst), saranno in grado di identificare e caratterizzarne un numero più ampio. 
Se si fossero sviluppate forme di vita su altri pianeti, è certamente possibile che ciò sia accaduto con modalità differenti rispetto alla Terra. Sicuramente, è anche possibile che se mai si sviluppassero delle forme di vita su altri pianeti, questo potrebbe avvenire con modalità differenti da come è accaduto sulla Terra. «Non sono sicuro di quanto sia contingente la vita, ma dato che abbiamo un solo esempio finora, ha senso cercare altri posti che sono più simili a noi. C’è un’importante distinzione tra ciò che è necessario e ciò che è sufficiente. Gli elementi costitutivi sono necessari, ma potrebbero non essere sufficienti: è possibile che li mescoli per miliardi di anni e che non accada nulla. Ma vuoi almeno guardare nei luoghi dove le cose necessarie esistono», ha continuato Rimmer.
Secondo stime recenti, ci sono circa settecento miliardi di miliardi di pianeti simili alla Terra nell’universo osservabile. «Avere un’idea di in quale frazione [di questi pianeti, nda] possa essere stata, o potrebbe essere, innescata la vita mi affascina. Certamente avere condizioni favorevoli per la vita non è tutto e ancora non sappiamo quanto sia probabile l’origine della vita, anche in circostanze favorevoli – se risulta improbabile allora potremmo essere soli, altrimenti potremmo avere compagnia» ha concluso Sutherland.
Per saperne di più:

mercoledì 1 agosto 2018

Grande Piramide, i fisici scoprono il segreto della sua energia: Diventa il modello per le celle solari del futuro.

---------------------------
Le celle solari del futuro si ispirano alla Piramide di Cheope: al di là delle leggende, la piramide di Giza è stata studiata con i metodi della fisica ed è emerso che riesce a concentrare l'energia elettromagnetica, e precisamente le onde radio, sia nelle camere interne sia nella base. Si potrebbero così progettare nanoparticelle ispirate alla struttura di questo edificio che siano in grado di riprodurre un effetto analogo nel campo dell'ottica, da utilizzare per ottenere celle solari più efficienti. Lo indica la ricerca pubblicata sul Journal of Applied Physics e condotta dai fisici della Itmo University a San Pietroburgo e del tedesco Laser Zentrum di Hannover.
Per Tullio Scopigno, fisico dell'Università Sapienza di Roma, l'applicazione prospettata dai ricercatori è interessante "ma questo studio va preso con cautela, in quanto basato su modelli matematici non ancora supportati da evidenze sperimentali". I ricercatori hanno condotto lo studio perché interessati alla struttura della della tomba del faraone Cheope dal punto di vista fisico. In particolare hanno voluto vedere come le onde radio si distribuiscono nella sua complessa struttura.
Per farlo hanno ipotizzato che non ci siano cavità sconosciute e che il materiale calcareo da costruzione sia uniformemente distribuito. Sulla base di queste ipotesi è stata messa a punto una simulazione matematica e si è visto che la Grande Piramide può concentrare le onde radio nelle sue camere interne e sotto la base, un po' come una parabola.
Questo avviene, rileva Scopigno, perché "la lunghezza d'onda delle onde radio, compresa 200 e 600 metri, è in un certo rapporto rispetto alle dimensioni della piramide". Questo significa che per avere lo stesso effetto con altri tipi di radiazioni che hanno lunghezze d'onda diverse, come la luce, sono necessarie strutture di dimensioni diverse, precisamente occorrono dispositivi in miniatura. Ecco perché i ricercatori prevedono di progettare nanoparticelle, ossia delle dimensioni di qualche milionesimo di millimetro, e a forma di piramide,  in grado di riprodurre effetti simili nel campo ottico, da usare nelle celle solari.