sabato 27 luglio 2019

Tecnologia Terahertz (THZ) in fase di sperimentazione, per rete cellulare di sesta generazione (6G)

Fonte: Phys.org
--------------------
La perfetta integrazione dei collegamenti wireless nelle reti in fibra ottica è la chiave per le reti di dati ad alte prestazioni: le future reti cellulari saranno costituite da molte piccole celle radio che possono essere collegate in modo flessibile tramite collegamenti di trasmissione THz ad alte prestazioni. Al ricevitore, i segnali THz possono essere convertiti direttamente in segnali ottici con l'aiuto di modulatori plasmonici ultrarapidi e trasmessi tramite reti in fibra di vetro.
Le future reti di dati wireless dovranno raggiungere velocità di trasmissione più elevate e ritardi più brevi, fornendo al contempo un numero crescente di dispositivi terminali. A tal fine, sono necessarie strutture di rete costituite da molte piccole celle radio. Per collegare queste celle saranno necessarie linee di trasmissione (ad alte prestazioni) ad alte frequenze fino alla gamma dei terahertz (THz). Inoltre, se possibile, deve essere garantita la perfetta connessione alle reti in fibra di vetro. I ricercatori dell'Istituto di tecnologia di Karlsruhe (KIT) utilizzano modulatori elettro-ottici ultrarapidi per convertire i segnali di dati terahertz in segnali ottici. Tutti i dettagli dello studio sono riportati nell'articolo su Nature Photonics. 
Mentre la nuova tecnologia di rete cellulare 5G è già stata testata ed è pronta per le nuove applicazioni, i ricercatori stanno già lavorando su tecnologie per la prossima generazione di trasmissione dati wireless. Si tratta del "6G" (sesta generazione), il cui obiettivo è quello di raggiungere velocità di trasmissione molto più elevate, ritardi più brevi e una maggiore "densità" del dispositivo, con l'integrazione dell'intelligenza artificiale.
Sulla strada per la rete cellulare di sesta generazione (6G), molte sfide devono essere affrontate sia per quanto riguarda i singoli componenti che la loro interazione. Le future reti wireless saranno costituite da un numero di piccole celle radio per trasmettere in modo rapido ed efficiente grandi volumi di dati. Queste celle saranno collegate da linee di trasmissione, che possono gestire decine o addirittura centinaia di gigabit al secondo per collegamento. Le frequenze necessarie sono nell'intervallo dei terahertz; cioè tra le microonde e la radiazione infrarossa (nello spettro elettromagnetico). Inoltre, i percorsi di trasmissione wireless devono essere perfettamente collegati alle reti in fibra di vetro. In questo modo, verranno combinati i vantaggi di entrambe le tecnologie; ovvero: alta capacità e affidabilità, nonché mobilità e flessibilità.
Gli scienziati hanno sviluppato un approccio promettente alla conversione dei flussi di dati tra i domini terahertz e quelli ottici. Nell'esperimento sono stati utilizzati modulatori elettro-ottici ultrarapidi per convertire direttamente un segnale dati terahertz in un segnale ottico e per accoppiare direttamente l'antenna del ricevitore a una fibra di vetro. Nel loro esperimento, gli scienziati hanno selezionato un'onda portante avente una frequenza di circa 0,29 THz e hanno raggiunto una velocità di trasmissione dati di 50 Gbit / s. 
"Il modulatore si basa su una nanostruttura plasmonica e ha una larghezza di banda di oltre 0,36 THz", afferma il professor Christian Koos; per poi aggiungere: "I nostri risultati rivelano il grande potenziale dei componenti nanofotonici per l'elaborazione del segnale ultraveloce". Il concetto dimostrato dai ricercatori ridurrà considerevolmente la complessità tecnica delle future stazioni radio di base e consentirà connessioni terahertz con velocità di trasmissione dati molto elevate: sono possibili diverse centinaia di gigabit al secondo.

È giunta l'era dei transistor in 2D ! Per nanochips ultraveloci.

Fonte: Phys.org
--------------------
Per decenni, i transistor sui nostri microchip sono diventati più piccoli, più veloci ed economici. Circa ogni due anni il numero di transistor su chip commerciali è raddoppiato: questo fenomeno è diventato noto come "Legge di Moore". Ma ormai da diversi anni, la legge di Moore non regge più. La miniaturizzazione ha raggiunto un limite naturale; poiché sorgono problemi completamente nuovi quando ci si avvicina ad una scala di lunghezze di pochi nanometri. 
Ora, tuttavia, il prossimo grande passo di miniaturizzazione potrebbe presto diventare possibile - con i cosiddetti "materiali bidimensionali (2-D)" che possono consistere in un solo strato atomico. Con l'aiuto di un nuovo isolante a base di fluoruro di calcio, gli scienziati dell'Università Tecnica di Vienna (TU Wien), in Austria, hanno creato un transistor ultrasottile, che ha eccellenti proprietà elettriche e contrariamente alle tecnologie precedenti, può essere miniaturizzato a dimensioni estremamente ridotte. La nuova tecnologia è stata recentemente presentata sulla rivista Nature Electronics.
La ricerca sui materiali semiconduttori necessari per fabbricare transistor ha registrato progressi significativi negli ultimi anni. Oggi, i semiconduttori ultrasottili possono essere realizzati con materiali 2D, costituiti da pochi strati atomici. "Ma questo non è sufficiente per costruire un transistor estremamente piccolo", afferma il professor Tibor Grasser dell'Istituto di microelettronica della Università Tecnica di Vienna. "Oltre al semiconduttore ultrasottile, abbiamo anche bisogno di un isolante ultrasottile." 
Ciò è dovuto alla struttura di progettazione fondamentale di un transistor: la corrente può fluire da un lato all'altro del transistor, ma solo se al centro viene applicata una tensione, creando un campo elettrico. L'elettrodo che fornisce questo campo deve essere isolato elettricamente dal semiconduttore stesso. "Esistono già esperimenti con transistor con semiconduttori ultrasottili, ma fino ad ora sono stati accoppiati con isolanti ordinari", afferma Tibor Grasser. "Non c'è molto vantaggio nel ridurre lo spessore del semiconduttore quando deve ancora essere combinato con uno spesso strato di materiale isolante. Non c'è modo di miniaturizzare ulteriormente un tale transistor. Inoltre, su scale di lunghezza molto ridotte, la superficie dell'isolante si è rivelato disturbare le proprietà elettroniche del semiconduttore ".
Pertanto, Yury Illarionov, postdoc nella squadra di Tibor Grasser, ha provato un nuovo approccio. Ha usato materiali 2D ultra sottili non solo per la parte a semiconduttore del transistor, ma anche per la parte isolante. Selezionando materiali isolanti ultrasottili come i cristalli ionici, è possibile costruire un transistor con una dimensione di pochi nanometri. Le proprietà elettroniche in tal caso vengono nettamente migliorate, poiché i cristalli ionici possono avere una superficie perfettamente regolare, senza un singolo atomo che sporge dalla superficie (il che potrebbe disturbare il campo elettrico). "I materiali convenzionali hanno legami covalenti nella terza dimensione: atomi che si accoppiano ai materiali vicini sopra e sotto", spiega Tibor Grasser. "Questo non è il caso dei materiali 2D e dei cristalli ionici e quindi non interferiscono con le proprietà elettriche del semiconduttore."
Per produrre il nuovo transistor ultrasottile, è stato scelto il fluoruro di calcio come materiale isolante. Lo strato di fluoruro di calcio è stato prodotto presso l'Istituto Ioffe di San Pietroburgo. Il transistor stesso è stato quindi prodotto dal team del Prof. Thomas Müller, presso l'Istituto di fotonica della Università Tecnica di Vienna e analizzato presso l'Istituto di microelettronica.
Il primissimo prototipo ha già superato tutte le aspettative: "Per anni abbiamo ricevuto numerosi transistor diversi per indagare sulle loro proprietà tecniche, ma non abbiamo mai visto nulla di simile al nostro transistor con l'isolante al fluoruro di calcio", afferma Tibor Grasser. "Il prototipo, con le sue proprietà elettriche superiori, supera tutti i modelli precedenti."
Ora il team vuole scoprire quali combinazioni di isolanti e semiconduttori funzionano meglio. Potrebbero essere necessari alcuni anni prima che la tecnologia possa essere utilizzata per chip di computer disponibili in commercio, poiché i processi di produzione per gli strati di materiale devono ancora essere migliorati. "In generale, tuttavia, non vi è dubbio che i transistor realizzati con materiali 2D siano un'opzione molto interessante per il futuro", afferma Tibor Grasser. "Da un punto di vista scientifico, è chiaro che i fluoruri che abbiamo appena testato sono attualmente la migliore soluzione per il problema degli isolanti. Ora, rimangono solo alcune domande tecniche a cui rispondere". 
Questo nuovo tipo di transistor più piccolo e più veloce dovrebbe consentire all'industria dei computer di compiere il prossimo grande passo. In questo modo, la legge di Moore sull'aumento esponenziale della potenza dei computer potrebbe presto, prendere di nuovo vita. 

lunedì 15 luglio 2019

Il primo vaccino al mondo, creato da un'intelligenza artificiale.

----------------------------------

Dei ricercatori australiani hanno realizzato un'intelligenza artificiale che ha permesso la creazione di un nuovo vaccino contro il virus dell'influenza.
L'uso del computer nello sviluppo di un trattamento farmacologico non è una novità. Di solito vengono utilizzati per simulare il loro meccanismo molecolare, al fine di verificare che possano legarsi all'obiettivo desiderato. Ma gli scienziati della Flinders University nel sud dell'Australia si sono spinti oltre, creando un'IA in grado di sviluppare e testare le molecole in modo completamente indipendente. Ciò al fine di determinare quale trattamento farmacologico potrebbe essere usato per un vaccino efficace. 
Infatti, questo algoritmo, che hanno chiamato SAM (Search Algorithm for Ligands), può analizzare tutte le molecole esistenti o che possono essere create, al fine di ottenere il composto più efficace (o ligando) contro una malattia (secondo il gruppo guidato dal professor Nikolai Petrovsky). Per questo, hanno dovuto insegnare a SAM diversi tipi di composti in grado di attivare il sistema immunitario (adiuvanti), e altri che non possono, in modo che possa distinguere le molecole efficaci da quelle che non lo sono. 
Un secondo algoritmo creato anche dal gruppo ha il compito di generare miliardi di composti chimici che verranno poi analizzati da SAM. Quest'ultimo definirà quali potenzialmente potrebbero essere utilizzati per lo sviluppo di vaccini efficaci. I ricercatori dovevano solo sintetizzare i migliori candidati per testarli finalmente sul sangue umano. "Questo ha confermato che SAM non solo ha la capacità di identificare trattamenti buoni, ma potrebbe anche sviluppare migliori farmaci immunitari umani, che attualmente ancora non esistono", afferma il prof. Petrovsky. "Abbiamo quindi preso i farmaci in via di sviluppo creati da SAM per i test sugli animali per confermare la loro capacità di aumentare l'efficacia del vaccino antinfluenzale. La sperimentazione animale ci ha già dimostrato che il vaccino è molto protettivo contro l'influenza e sovraperforma i vaccini esistenti. Ora, dobbiamo solo confermarlo negli umani. "
Petrovsky aggiunge anche che la loro IA può essere utilizzata per lo sviluppo di altri trattamenti, consentire uno sviluppo molto più veloce di questi e quindi risparmiare milioni di dollari nella ricerca (uno svantaggio che ha ostacolato il loro studio). In effetti, ricevere fondi per la ricerca in Australia è molto complicato se non sei uno dei più grandi istituti o università del paese.
"È particolarmente difficile per i ricercatori ospedalieri, come noi, avere un'influenza positiva su questo sistema nonostante il fatto che precedenti premi Nobel, compresi quelli di Barry Marshall, siano derivati da ricerche ospedaliere ", aggiunge Petrovsky. Come risultato di questo problema, molti scienziati cercheranno fondi in altri paesi. La richiesta di sovvenzione di Petrovsky è stata respinta in Australia, ma è stata accettata dall'Istituto Nazionale della Salute degli Stati Uniti, che gli ha assegnato più di 50 milioni di dollari. 
Il gruppo ha avviato studi clinici negli Stati Uniti, che dureranno 12 mesi. La scelta di sviluppare un vaccino antinfluenzale efficace deriva dall'aumento dei tassi di infezione negli ultimi anni, che hanno raddoppiato il numero di decessi causati dall'influenza stagionale nel 2019 in Australia. Nel 2018, più di 13.000 decessi sono stati attribuiti all'influenza stagionale in Francia.

giovedì 2 agosto 2018

Luce ultravioletta fondamentale per la vita.

Fonte: Media INAF
------------------------
Uno studio pubblicato ieri su Nature Advanced, grazie al lavoro svolto da un team di ricercatori del Regno Unito, ha trovato un collegamento tra condizioni per lo sviluppo di forme di vita extraterrestre e l'intensità della luce emessa dalla stella attorno alla quale orbita l'esopianeta.

Ricercatori dell‘Università di Cambridge e del Medical Research Council Laboratory di biologia molecolare (Mcr Lmb) hanno scoperto che le possibilità per cui si possano sviluppare forme di vita sulla superficie di un pianeta roccioso, come la Terra, sono collegate alla tipologia e all’intensità della luce emessa dalla sua stella ospite. Lo studio, pubblicato ieri su Science Advanced, è il risultato di una particolare collaborazione tra il Cavendish Laboratory di Cambridge e il Nrc Lmb, unione tra chimica organica e ricerca degli esopianeti.
Stelle che emettono sufficiente luce ultravioletta, potrebbero dare il calcio di inizio alla vita sui loro pianeti orbitanti, così come è probabile sia accaduto sulla Terra, dove i raggi Uv innescarono una serie di reazioni chimiche, producendo gli elementi costitutivi della vita. I ricercatori hanno individuato un gruppo di esopianeti, situati nella fascia di abitabilità della loro stella, dove la luce ultravioletta di questa è sufficiente per permettere a tali reazioni chimiche di avere luogo.
«Questo lavoro ci consente di restringere i posti migliori per cercare la vita» ha detto Paul Rimmer, ricercatore postdoc affiliato al Cavendish Laboratory e al Mrc Lmb, nonché primo autore del paper. «Ci porta un pò più vicini ad affrontare la questione se siamo soli nell’Universo».
Lo studio è stato costruito sul lavoro svolto dal professor John Sutherland, coautore del paper e studioso delle origini chimiche della vita sulla Terra, il quale già nel 2015 aveva suggerito che il cianuro, anche se mortale, fosse un ingrediente chiave nella zuppa primordiale da cui tutta la vita sulla Terra ha avuto origine. In questa ipotesi il carbonio derivante dalle meteoriti che si schiantarono sulla giovane Terra interagì con l’azoto presente nell’atmosfera, creando così l’acido cianidrico. L’acido cianidrico è piovuto sulla superficie, dove ha interagito con altri elementi in vari modi, alimentato dalla luce ultravioletta del Sole. Le sostanze chimiche prodotte da queste interazioni hanno generato gli elementi costitutivi dell’Rna, che la maggior parte dei biologi crede sia la prima molecola di vita in grado di trasmettere informazioni. In laboratorio il gruppo di Sutherland ha ricreato queste reazioni chimiche sotto le lampade Uv, e generato i precursori di lipidi, amminoacidi e nucleotidi, che sono tutte componenti essenziali delle cellule viventi.
«Mi sono imbattuto in questi esperimenti precedenti, e come astronomo, la mia prima domanda è sempre stata quale tipo di luce stessero usando, cosa cui, in quanto biologi, non avevano realmente pensato. Ho cominciato misurando il numero di fotoni emessi dalle loro lampade, e poi realizzato che confrontare questa luce con quella di diverse stelle era un inequivocabile passo successivo», ha spiegato Rimmer. 
I due gruppi di ricercatori hanno eseguito una serie di esperimenti di laboratorio per misurare quanto velocemente gli elementi costitutivi della vita si possano formare dagli ioni di acido cianidrico e di acido solfidrico in acqua, una volta esposti alla luce ultravioletta. Hanno poi ripetuto lo stesso esperimento in assenza di luce. In quello eseguito sotto la luce sono emersi gli elementi costitutivi necessari, mentre da quello al buio è risultato un composto inerte non idoneo. I ricercatori hanno pertanto tracciato la quantità di luce ultravioletta necessaria ai pianeti in orbita per determinare dove la chimica potrebbe essere attivata. 
Hanno scoperto che le stelle che hanno circa la temperatura del nostro Sole emettono abbastanza luce per la formazione degli elementi costitutivi per la vita sulla superficie dei loro pianeti. Le stelle fredde d’altra parte, non producono abbastanza luce per la creazione di questi elementi, a meno che non abbiano potenti brillamenti solari tali da innescare adeguate catene di reazioni chimiche.
I pianeti che rispettano le condizioni sopra indicate si collocano in quella che i ricercatori hanno chiamato zona di abiogenesi. Tra gli esopianeti conosciuti che si trovano in questa zona, alcuni sono stati rilevati dal telescopio Kepler, incluso Kepler 542b, pianeta a cui è stato dato il soprannome di “cugino” della Terra, nonostante sia troppo lontano per essere esplorato con la tecnologia attuale. Telescopi di prossima generazione, come Tess e James Webb Space Telescope (Jwst), saranno in grado di identificare e caratterizzarne un numero più ampio. 
Se si fossero sviluppate forme di vita su altri pianeti, è certamente possibile che ciò sia accaduto con modalità differenti rispetto alla Terra. Sicuramente, è anche possibile che se mai si sviluppassero delle forme di vita su altri pianeti, questo potrebbe avvenire con modalità differenti da come è accaduto sulla Terra. «Non sono sicuro di quanto sia contingente la vita, ma dato che abbiamo un solo esempio finora, ha senso cercare altri posti che sono più simili a noi. C’è un’importante distinzione tra ciò che è necessario e ciò che è sufficiente. Gli elementi costitutivi sono necessari, ma potrebbero non essere sufficienti: è possibile che li mescoli per miliardi di anni e che non accada nulla. Ma vuoi almeno guardare nei luoghi dove le cose necessarie esistono», ha continuato Rimmer.
Secondo stime recenti, ci sono circa settecento miliardi di miliardi di pianeti simili alla Terra nell’universo osservabile. «Avere un’idea di in quale frazione [di questi pianeti, nda] possa essere stata, o potrebbe essere, innescata la vita mi affascina. Certamente avere condizioni favorevoli per la vita non è tutto e ancora non sappiamo quanto sia probabile l’origine della vita, anche in circostanze favorevoli – se risulta improbabile allora potremmo essere soli, altrimenti potremmo avere compagnia» ha concluso Sutherland.
Per saperne di più:

mercoledì 1 agosto 2018

Grande Piramide, i fisici scoprono il segreto della sua energia: Diventa il modello per le celle solari del futuro.

---------------------------
Le celle solari del futuro si ispirano alla Piramide di Cheope: al di là delle leggende, la piramide di Giza è stata studiata con i metodi della fisica ed è emerso che riesce a concentrare l'energia elettromagnetica, e precisamente le onde radio, sia nelle camere interne sia nella base. Si potrebbero così progettare nanoparticelle ispirate alla struttura di questo edificio che siano in grado di riprodurre un effetto analogo nel campo dell'ottica, da utilizzare per ottenere celle solari più efficienti. Lo indica la ricerca pubblicata sul Journal of Applied Physics e condotta dai fisici della Itmo University a San Pietroburgo e del tedesco Laser Zentrum di Hannover.
Per Tullio Scopigno, fisico dell'Università Sapienza di Roma, l'applicazione prospettata dai ricercatori è interessante "ma questo studio va preso con cautela, in quanto basato su modelli matematici non ancora supportati da evidenze sperimentali". I ricercatori hanno condotto lo studio perché interessati alla struttura della della tomba del faraone Cheope dal punto di vista fisico. In particolare hanno voluto vedere come le onde radio si distribuiscono nella sua complessa struttura.
Per farlo hanno ipotizzato che non ci siano cavità sconosciute e che il materiale calcareo da costruzione sia uniformemente distribuito. Sulla base di queste ipotesi è stata messa a punto una simulazione matematica e si è visto che la Grande Piramide può concentrare le onde radio nelle sue camere interne e sotto la base, un po' come una parabola.
Questo avviene, rileva Scopigno, perché "la lunghezza d'onda delle onde radio, compresa 200 e 600 metri, è in un certo rapporto rispetto alle dimensioni della piramide". Questo significa che per avere lo stesso effetto con altri tipi di radiazioni che hanno lunghezze d'onda diverse, come la luce, sono necessarie strutture di dimensioni diverse, precisamente occorrono dispositivi in miniatura. Ecco perché i ricercatori prevedono di progettare nanoparticelle, ossia delle dimensioni di qualche milionesimo di millimetro, e a forma di piramide,  in grado di riprodurre effetti simili nel campo ottico, da usare nelle celle solari.

lunedì 30 luglio 2018

L'intelligenza artificiale è riuscita a leggere la 'mente' di un altro computer.

Fonte: ANSA Scienze
---------------------------
L'intelligenza artificiale è riuscita a leggere la 'mente' di un altro computer: è un primo passo verso uno scenario in cui le macchine potrebbero collaborare tra loro. Il risultato, si legge sul sito della rivista Science, si deve al progetto ToMnet messo a punto dall'azienda DeepMind di Google ed è stato presentato a Stoccolma, nella Conferenza internazionale sull'apprendimento delle macchine.
Messo a punto sotto la guida di Neil Rabinowitz, il progetto ToMnet si basa su tre reti neurali, ossia reti che imitano l'organizzazione del cervello, ciascuna in grado di apprendere dall'esperienza.

Per addestrare l'intelligenza artificiale di ToMnet a prevedere i comportamenti di altre macchine, i ricercatori hanno utilizzato un gioco virtuale basato su tre categorie di personaggi che si muovevano in una stanza per raccogliere caselle colorate: personaggi ciechi che tendevano a seguire i perscorsi lungo muri,  miopi che si spostavano solo verso gli oggetti più vicini e personaggi dalla supervista, che afferravano strategicamente gli oggetti in un ordine specifico per guadagnare più punti.
Dopo un po' di addestramento, il sistema è riuscito a identificare tutti i personaggi grazie a pochi passaggi e a prevedere in modo corretto il comportamento di ognuno di essi.